Characterizing Social Interactions using the Sociometer
نویسندگان
چکیده
Knowledge of how groups of people interact is important in many disciplines, e.g. organizational behavior, social network analysis, knowledge management and ubiquitous computing. Existing studies of social network interactions have either been restricted to online communities, where unambiguous measurements about how people interact can be obtained, or have been forced to rely on questionnaires, or diaries to get data on face-to-face interactions. Surveybased methods are error prone and impractical to scale up. This paper describes our work in developing a computational framework to model face-to-face interactions within a community. We have integrated methods from speech processing and machine learning to demonstrate that it is possible to extract information about people’s patterns of communication, without imposing any restriction on the user’s interactions or environment. Furthermore, we analyze some of the conversational dynamics and present results that demonstrate distinctive and consistent turntaking styles for individuals during conversations. Finally, we present results that show strong correlation between a person’s turn-taking style during one-on-one conversations and the person’s role within the network. Author
منابع مشابه
Modeling Face-to-Face Communication using the Sociometer
Knowledge of how people interact is important in many disciplines, e.g. organizational behavior, social network analysis, information diffusion and knowledge management applications. We are developing methods to automatically and unobtrusively learn the social network structures that arise within human groups based on wearable sensors. At present researchers mainly have to rely on questionnaire...
متن کاملThe Sociometer: A Wearable Device for Understanding Human Networks
In this paper, we describe the use of the sociometer, a wearable sensor package, for measuring face-to-face interactions between people. We develop methods for learning the structure and dynamics of human communication networks. Knowledge of how people interact is important in many disciplines, e.g. organizational behavior, social network analysis and knowledge management applications such as e...
متن کاملSensing and Modeling Human Networks using the Sociometer
Knowledge of how people interact is important in many disciplines, e.g. organizational behavior, social network analysis, information diffusion and knowledge management applications. We are developing methods to automatically and unobtrusively learn the social network structures that arise within human groups based on wearable sensors. At present researchers mainly have to rely on questionnaire...
متن کاملCharacterizing Social Networks using the Sociometer
Knowledge of how groups of people interact is important in many disciplines, e.g. organizational behavior, social network analysis, knowledge management and ubiquitous computing. Existing studies of social network interactions have either been restricted to online communities, where unambiguous measurements about how people interact can be obtained, or have been forced to rely on questionnaires...
متن کاملSensing and Modeling Human Networks
Knowledge of how groups of people interact is important in many disciplines, e.g. organizational behavior, social network analysis, knowledge management and ubiquitous computing. Existing studies of social network interactions have either been restricted to online communities, where unambiguous measurements about how people interact can be obtained (available from chat and email logs), or have ...
متن کامل